Received: November 9, 1982; accepted January 26, 1983

A SIMPLE MULTIGRAM SYNTHESIS OF β -UF₅ - REDUCTION OF UF₆ BY PF₃⁺

T. A. O'DONNELL* Department of Inorganic Chemistry, University of Melbourne, Parkville, Victoria 3052 (Australia)

R. RIETZ

Raychem Corporation, Menlo Park, CA, 94025 (U.S.A.)

S. YEH

Intel Corporation, Livermore, CA, 94550 (U.S.A.)

SUMMARY

Controlled low-temperature reduction of UF₆ with commercially-available PF₃ in a standard metal vacuum system provides a convenient multigram synthesis of β -UF₅. A comparison is made with reduction reactions of UF₆ reported earlier and with the corresponding NpF₆ and PuF₆ reactions.

INTRODUCTION

Earliest preparations of UF₅ involved halogen-exchange between HF and UCl₅ or UCl₆ [1] or equilibration between stoichiometric amounts of UF₆ and UF₄ at elevated temperature [2]. Controlled oxidation by F₂ of UF₄ suspended in anhydrous hydrogen fluoride (AHF) required the preliminary preparation of UF₄ with a large surface area [3].

More recent methods have been based on reduction of UF6 dissolved in AHF by H₂ [4], HBr [5], Si [6] and CO [7], UV irradiation being used in the latter cases. Other methods require prior preparation of complex starting materials, *e.g.* in the acid-base displacement by BF3 of UF5 from NOUF6 dissolved in AHF [8]. These syntheses have been carried out in small Kel-F reaction tubes in order to obviate contamination through corrosion of metal reaction vessels by AHF. Therefore the preparative scale has necessarily

© Elsevier Sequoia/Printed in The Netherlands

[†]This work was performed in the Materials and Molecular Research Division, Lawrence Berkeley Laboratory, University of California, Berkley, CA, 94720, U.S

been limited, usually, to about]g or less. The CO reduction method was scaled up by using UV irradiation of the gas phase reaction in a l ℓ quartz bulb; but 'fogging' of the walls of the bulb by the involatile product UFs limited the optimum scale to about 5g [9]. Becker and Jacob have reported multigram preparation of β -UFs (*ca* 50g) by direct photodissociation of UF6; but the necessary equipment is complex and expensive.

The procedure reported here uses simple, standard equipment and allows preparation of high-purity β -UFs in quantities well in excess of 20g and there appears to be no reason why it should not be scaled up significantly. It is based on controlled reduction at $-78^{\circ}C$ of UF₆ by PF₃ which is available commercially. Because F₂, HF and other highly corrosive fluorides are not involved, standard metal vacuum lines constructed from commercial stainless steel or Monel valves, connecting unions and gauges can be used. PF₅, produced in the reaction, and any unreacted PF₃ and UF₆ are all much more volatile than UF₅ and so UF₅ can be isolated easily in a high state of purity.

The experimental conditions now established for preparation of UF₅ by PF₃ reduction allow a rationalisation and interpretation of many previouslyreported reactions involving reduction of UF₆ in terms of a relatively easy thermal disproportionation of UF₅. Np(V) has been shown to be less susceptible to disproportionation than U(V) and Pu(V) and so it is significant that, following this work, NpF₅ was prepared by reduction of NpF₆ with PF₃ under conditions where a pure sample of UF₅ might not have been expected and that under the same conditions reduction of PF₆ with PF₃ gave PuF₄ [11].

EXPERIMENTAL

The volatile reactants were manipulated in a Monel vacuum system based on the Argonne National Laboratory design [12]. A simpler, less expensive stainless steel line built from Whitey valves and Swagelok unions would be equally suitable [13]. In a typical run 44.5g (126 mmol) of UF₆ (Oak Ridge National Laboratory) and 107 mmol (measured by p-v-T relationships) of PF₃ (Ozark-Mahoning) were condensed at -196° C into a heavy walled stainless steel reaction vessel which was held at -78° C for 2 days and then allowed to warm slowly to room temperature. Reaction was not complete under these conditions and unreacted PF₃ and UF₆ as well as a reaction product PF₅ were distilled into traps at -78° C and -196° C and the system was then pumped for

98

2 hours. 17.5g (49.7 mmol) of unreacted UF6 was condensed at -78° C. 24.8g of involatile product, identified as β -UF5 by comparison of its X-ray powder pattern with that of pure β -UF5 previously prepared, was recovered from the reaction vessel in a high-efficiency glove box. Its colour was pale yellow-green or pale blue-green in different runs. Variable colour has been reported previously for β -UF5 [5,6,10] and this may result from very slight surface hydrolysis.

When in a separate experiment the reaction vessel was allowed to warm rapidly from -196^OC and -78^OC to room temperature, the solid product was not UF₅ but UF₄ or an intermediate fluoride such as U₄F₁₇, depending on reaction conditions.

In an alternative <u>small-scale</u> procedure, 0.22g (0.62 mmol) UF₆ was dissolved in about 3 ml of AHF at room temperature in a Kel-F tube provided with a Teflon-coated magnetic stirrer bar. The tube was cooled to $-196^{\circ}C$ and excess PF₃ (5.7 mmol) condensed on to the solid AHF. The mixture was allowed to warm to room temperature and stirring maintained for about 2 hours. A light blue-green solid precipitated which was identified as β -UF₅ by X-ray powder diffraction techniques, after removal of all volatile species by distillation and pumping and transfer of the solid residue to capillaries in a dry-box.

DISCUSSION

In earlier studies of the UF6-PF3 reaction at about the l gram scale in Kel-F reaction tubes, it had been reported that the solid reaction product was UF4 when PF3 was in excess and mixtures of UF4, U_4F_{17} and UF5 when UF6 was in excess [14]. In that work PF3 was condensed on to UF6 at $-196^{\circ}C$ and the reaction mixture allowed to come to room temperature at a natural warming rate and then left to stand for equilibration. Under the experimental conditions reported in this paper of prolonged reaction at $-78^{\circ}C$ in a stainless steel reaction vessel and slow warming to room temperature, the product is UF5 even with excess PF3.

The earlier work can be rationalized by recognizing the very poor thermal transfer properties of Kel-F. Energy from the exothermic reduction reaction would be dissipated very slowly and, under these conditions, UF₅ formed initially would disproportionate to UF₄ and UF₆ which would then react with PF₃. With excess PF₃, all of the initial UF₅ would be converted to UF₄. The system would, of course, be much more complex when UF₆ was in excess because progressive disproportionation and reduction to UF4 would not proceed to completion even on stoichiometry grounds. Furthermore, an excess of UF6 would inhibit UF5 disproportionation even at the somewhat elevated temperatures within the Kel-F tube.

In this work, UF₅ is formed slowly and incompletely at $-78^{\circ}C$ with ideal conditions for dissipation of the heat of reaction. The mass, thermal capacity and thermal conductance of the metal reaction vessel are such that disproportionation is prevented. Support for this postulate has been provided by allowing the metal reaction vessel to warm relatively quickly and the products of reaction were then found to include UF₄ and fluorides intermediate between UF₄ and UF₅. In earlier work [15], it has been shown that compounds thermally unstable at or below room temperature can be isolated if cold AHF or another solvent is used as a "heat sink". In the work reported here, 0.22g UF₆, dissolved in AHF, was not reduced beyond UF₅ even though the reaction was carried out in a Kel-F tube and with excess PF₃.

Thermal disproportionation of UF₅ at or above room temperature has been used here to account for differences in observed reaction products from the reduction of UF₆ by PF₃ depending on the experimental conditions. Many other older observations can be rationalized similarly, *e.g.* the hightemperature reactions of UF₆ with H₂, HCI, HBr and HI to give UF₄ [16], whereas controlled low-temperature reactions with H₂ and with HBr have been shown more recently to yield UF₅ [4,5]. It is significant that reduction of NpF₆ with excess PF₃ in a Kel-F tube gives NpF₅, under conditions where disproportionation of UF₅ might have been expected, and the corresponding reaction with PuF₆ gave PuF₄ [11]. These observations can be reconciled with the known facts that Np(V) is much less susceptible to disproportionation than U(V) and Pu(V).

The results reported here are not inconsistent with two recent reports on uranium pentahalide reactions although, as discussed earlier, they are different from results of O'Donnell *et al.* reported in]966 [14]. In the 1966 work, UF₆ was reacted with PF₃ and with halogen exchange reactants in Kel-F tubes, which have poor heat-transfer properties, and without any appreciation of the ease of thermal disproportionation of UF₅ under these conditions and, therefore, without any control of the rate at which the reaction mixture warmed from $-196^{\circ}C$ to room temperature. Partial or complete formation of UF₄ is reasonable under these conditions. Very recent work by Brown, Berry and Holloway [17] has shown very clean inter-

100

conversion of uranium pentahalides. These reactions were studied in glass, which has good heat-transfer properties, and under controlled conditions, using a solvent which acts as a thermal dissipant in bromine-exchange reactions. Also very recently, Sanyal, Sharp and Winfield [18] have reduced UF₆ to UF₅ with I₂ in the solvent IF₅, where again the solvent provides thermal control of reduction and prevents disproportionation.

ACKNOWLEDGEMENT

We wish to acknowledge facilities made available in the research group of Dr. Norman Edelstein at the Lawrence Berkeley Laboratory, California, and X-ray powder diffraction structural determinations carried out in the same Laboratory.

REFERENCES

- J.J. Katz and E. Rabinowitch, 'The Chemistry of Uranium', Nat. Nucl. Energy Ser., Div. VIII, Vol. 5, 1951, p.386, McGraw-Hill.
- 2 J.J. Katz and G.T. Seaborg, 'The Chemistry of the Actinide Elements', 1957, Methuen, 156-8.
- 3 L.B. Asprey and R.A. Penneman, J. Amer. Chem. Soc., 89 (1967) 172.
- 4 J.H. Levy and P.W. Wilson, Aust. J. Chem., 26 (1973) 2711.
- 5 V.E. Jacob, Z. anorg. allg. Chem., 400 (1973) 45.
- 6 L.B. Asprey and R.T. Paine, Chem. Commun., (1973) 920.
- 7 R.T. Paine and L.B. Asprey, 'Inorg. Syntheses', Vol. XIX (Ed. D.F. Shriver) 1979, Wiley, 137.
- J.R. Geichman, L.R. Swaney and P.R. Ogle, U.S. Report GAT-808, (1962).
- 9 G.W. Halstead, P.G. Eller, L.B. Asprey and K.V. Salazar, Inorg. Chem., 17 (1978) 2967.
- 10 F.S. Becker and E. Jacob, Angew. Chem. Int. Ed. Engl., 19 (1980) 227.
- 11 M. Baluka, S. Yeh, R. Banks and N. Edelstein, Inorg. Nucl. Chem. Letters, 16 (1980) 75.
- 12 J.H. Canterford and T.A. O'Donnell, 'Technique of Inorganic Chemistry', Vol. VII (Eds. H.B. Jonassen and A. Weissberger) 1968, Wiley, 285-9.
- 13 T.A. O'Donnell, 'Comprehensive Inorganic Chemistry', Vol. 2 (Eds. J.C. Bailar et al.) 1973, Pergamon, 1015-9.
- 14 T.A. O'Donnell, D.F. Stewart and P.W. Wilson, Inorg. Chem., <u>5</u> (1966) 1438.

- 15 R.C. Burns and T.A. O'Donnell, J. Inorg. Nucl. Chem., <u>42</u> (1980) 1285.
- 16 Ref. 2, p.161.
- 17 D. Brown, J.A. Berry and J.H. Holloway, J.C.S. Dalton Trans., (1982) 1385.
- 18 D.K. Sanyal, D.W.A. Sharp and J.M. Winfield, J. Fluorine Chem., <u>19</u> (1981/82) 55.